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Abstract

In Chinese societies, superstition is of paramount importance, and vehicle license plates
with desirable numbers can fetch very high prices in auctions. Unlike other valuable items,
license plates are not allocated an estimated price before auction. I propose that the task of
predicting plate prices can be viewed as a natural language processing (NLP) task, as the
value depends on the meaning of each individual character on the plate and its semantics.
I construct a deep recurrent neural network (RNN) to predict the prices of vehicle license
plates in Hong Kong, based on the characters on a plate. I demonstrate the importance of
having a deep network and of retraining. Evaluated on 13 years of historical auction prices,
the deep RNN’s predictions can explain over 80 percent of price variations, outperforming
previous models by a significant margin.
Keywords: price predictions; expert system; recurrent neural networks; deep learning; nat-
ural language processing

1 Introduction

Chinese societies place great importance on numerological superstition. Numbers such as 8
(representing prosperity) and 9 (longevity) are often used solely because of the desirable qualities
they represent. For example, the Beijing Olympic opening ceremony occurred on 2008/8/8 at 8
p.m., the Bank of China (Hong Kong) opened on 1988/8/8, and the Hong Kong dollar is linked
to the U.S. dollar at a rate of around 7.8.1

License plates represent a very public display of numbers that people can own, and can
therefore unsurprisingly fetch an enormous amount of money. Governments have not overlooked
this, and plates of value are often auctioned off to generate public revenue. Unlike the auctioning
of other valuable items, however, license plates generally do not come with a price estimate,
which has been shown to be a significant factor affecting the sale price [1, 2]. The large number
of character combinations and of plates per auction makes it difficult to provide reasonable
estimates.

This study proposes that the task of predicting a license plate’s price based on its characters
can be viewed as a natural language processing (NLP) task. Whereas in the West numbers can be

1In one of his newspaper column, Steven N.S. Cheung, a leading economist in Hong Kong, recalls that in
a exchange of letters regarding the establishment of the linked exchange rate, Sir John Henry Bremridge, who
played a key role in the establishment of the link in his role as the financial secretary of Hong Kong from 1981 to
1986, told him that “I knew people in Hong Kong like the character ‘8’, don’t you think I was a genius?”
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desirable (such as 7) or undesirable (such as 13) in their own right for various reasons, in Chinese
societies numbers derive their superstitious value from the characters they rhyme with. As the
Chinese language is logosyllabic and analytic, combinations of numbers can stand for sound-alike
phrases. Combinations of numbers that rhyme with phrases that have positive connotations are
thus desirable. For example, “168,” which rhythms with “all the way to prosperity” in Chinese,
is the URL of a major Chinese business portal (http://www.168.com). Looking at the historical
data analyzed in this study, license plates with the number 168 fetched an average price of
US$10,094 and as much as $113,462 in one instance. Combinations of numbers that rhyme with
phrases possessing negative connotations are equally undesirable. Plates with the number 888
are generally highly sought after, selling for an average of $4,105 in the data, but adding a 5
(rhymes with “no”) in front drastically lowers the average to $342.

As these examples demonstrate, the value of a certain combination of characters depends on
both the meaning of each individual character and the broader semantics. The task at hand is
thus closely related to sentiment analysis and machine translation, both of which have advanced
significantly in recent years.

Using a deep recurrent neural network (RNN), I demonstrate that a good estimate of a license
plate’s price can be obtained. The predictions from this study’s deep RNN were significantly
more accurate than previous attempts to model license plate prices, and are able to explain
over 80 percent of price variations. There are two immediate applications of the findings in this
paper: first, an accurate prediction model facilitates arbitrage, allowing one to detect underpriced
plates that can potentially fetch for a higher price in the active second-hand market. Second,
the feature vectors extracted from the last recurrent layer of the model can be used to construct
a search engine for historical plate prices. among other uses, the search engine can provide
highly-informative justification for the predicted price of any given plate.

In a more general sense, this study demonstrates the value of deep networks and NLP in
making accurate price predictions, which is of practical importance in many industries and has
led to a huge volume of research. As detailed in the following review, studies to date have relied
on small, shallow networks. The use of text data is also rare, despite the large amount of business
text data available. By demonstrating how a deep network can be trained to predict prices from
sequential data, this study provides an approach that may improve prediction accuracy in many
industrial applications.

The paper is organized as follows: Section 2 describes Hong Kong license plate auctions,
followed by a review of related studies in Section 3. Section 4 details the model, which is tested
in Section 5. Section 7 explores enhancements to the model, including the effect of retraining
over time. Section 8 concludes the paper, and includes a discussion of further developments that
have potential practical uses.

2 License Plate Auctions in Hong Kong

License plates have been sold through government auctions in Hong Kong since 1973, and restric-
tions are placed on the reselling of plates. Between 1997 and 2009, 3,812 plates were auctioned
per year, on average.

Traditional plates, which were the only type available before September 2006, consist of
either a two-letter prefix or no prefix, followed by up to four digits (e.g., AB 1, LZ 3360, or 168).
Traditional plates can be divided into the mutually exclusive categories of special plates and
ordinary plates. Special plates are defined by a set of legal rules and include the most desirable
plates.2 Ordinary plates are issued by the government when a new vehicle is registered. If the

2A detailed description of the rules is available on the government’s official auction web-
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vehicle owner does not want the assigned plate, she can return the plate and bid for another in
an auction. The owner can also reserve any unassigned plate for auction. Only ordinary plates
can be resold.

In addition to traditional plates, personalized plates allow vehicle owners to propose the string
of characters used. These plates must then be purchased from auctions. The data used in this
study do not include this type of plate.

Auctions are open to the public and held on weekends twice a month by the Transport
Department. The number of plates to be auctioned ranged from 90 per day in the early years
to 280 per day in later years, and the list of plates available is announced to the public well in
advance. The English oral ascending auction format is used, with payment settled on the spot,
either by debit card or check.

3 Related Studies

Most relevant to the current study is the limited literature on the modeling price of license
plates, which uses hedonic regressions with a larger number of handcrafted features [3, 4, 5].
These highly ad-hoc models rely on handcrafted features, so they adapt poorly to new data,
particularly if they include combinations of characters not previously seen. In contrast, the deep
RNN considered in this study learns the value of each combination of characters from its auction
price, without the involvement of any handcrafted features.

The literature on using neural networks to make price predictions is very extensive and covers
areas such as stock prices [6, 7, 8, 9], commodity prices [10, 11, 12], real estate prices [13, 14, 15],
electricity prices [16, 17], movie revenues [18, 19, 20, 21], automobile prices [22] and food prices
[23]. Most studies focus on numeric data and use small, shallow networks, typically using a single
hidden layer of fewer than 20 neurons. The focus of this study is very different: predicting prices
from combinations of alphanumeric characters. Due to the complexity of this task, the networks
used are much larger (up to 1,024 hidden units per layer) and deeper (up to 9 layers).

The approach is closely related to sentiment analysis. A particularly relevant line of research
is the use of Twitter feeds to predict stock price movements [24, 25, 26], although the current
study has significant differences. A single model is used in this study to generate predictions
from character combinations, rather than treating sentiment analysis and price prediction as two
distinct tasks, and the actual price level is predicted rather than just the direction of price move-
ment. This end-to-end approach is feasible because the causal relationship between sentiment
and price is much stronger for license plates than for stocks.

Deep RNNs have been shown to perform very well in tasks that involve sequential data, such
as machine translation [27, 28, 29, 30] and classification based on text description [31], and are
therefore used in this study. Predicting the price of a license plate is relatively simple: the model
only needs to predict a single value based on a string of up to six characters. This simplicity
makes training feasible on the relatively small volume of license plate auction data used in the
study, compared with datasets more commonly used in training deep RNN.

site: http://www.td.gov.hk/en/public_services/auction_of_vehicle_registration_marks/how_to_obtain_

your_favourite_vehicle_registration/schedule/index.html.
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4 Modeling License Plate Price with a Deep Recurrent
Neural Network

The input from each sample is an array of characters (e.g., [“X,” “Y,” “1,” “2,” “8”]), padded
to the same length with a special character. Each character st is converted by a lookup table
to a vector representation ht0, known as character embedding. The dimension of the character
embedding is a hyperparameter while the values are learned through training. The embedding
is fed into the neural network sequentially, denoted by the time step t.

The neural network consists of multiple bidirectional recurrent layers, followed by one or
more fully connected layers [32]. The bidirectionality allows the network to access hidden states
from both the previous and next time steps, improving its ability to understand each character
in context. The network also uses batch normalization, which has been shown to speed up
convergence [33].

Each recurrent layer is implemented as follows:

htl =
[
htl− : htl+

]
(1)

htl− = f(Bl(Wl−h
t
l−1 + Ul−h

t−1
l− )) (2)

htl+ = f(Bl(Wl+h
t
l−1 + Ul+h

t+1
l+ )) (3)

Bl(x) = γlx̂+ βl (4)

where f is the rectified-linear unit, htl−1 is the vector of activations from the previous layer at

the same time step t, ht−1
l represents the activations from the current layer at the previous time

step t− 1, and ht+1
l represents the activations from the current layer at the next time step t+ 1.

B is the BatchNorm transformation, and x̂ is the within-mini-batch-standardized version of x.3

W , U , γ and β are weights learnt by the network through training.
The fully connected layers are implemented as

hl = f(bl +Wlhl−1) (5)

except for the last layer, which is implemented as

y = bl +Wlhl−1 (6)

bl is a bias vector learnt from training. The outputs from all time steps in the final recurrent
layer are added together before being fed into the first fully connected layer.

To prevent overfitting, dropout is applied after every layer except the last [34].
The model’s hyperparameters include the dimension of character embeddings, number of

recurrent layers, number of fully connected layers, number of hidden units in each layer, and
dropout rate. These parameters must be selected ahead of training.

5 Experiment

5.1 Data

The data used are the Hong Kong license plate auction results from January 1997 to July 2010,
obtained from the HKSAR government. The data contain 52,926 auction entries, each consisting

3Specifically, x̂i = xi−x̄i√
σ2
xi

+ε
, where x̄i and σ2

xi
are the mean and variance of x within each mini-batch. ε is a

small positive constant that is added to improve numerical stability, set to 0.0001 for all layers.
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Figure 1: Distribution of Plate Prices

of i. the characters on the plate, ii. the sale price (or a specific symbol if the plate was unsold),
and iii. the auction date.

Figure 1 plots the distribution of prices within the data. The figure shows that the prices
are highly skewed: while the median sale price is $641, the mean sale price is $2,073. The most
expensive plate in the data is “12,” which was sold for $910,256 in February 2005. To compensate
for this skewness, log prices were used in training and inference.

Ordinary plates start at a reserve price of HK$1,000 ($128.2), with $5,000 ($644.4) for special
plates. The reserve prices mean that not every plate is sold, and 5.1 percent of the plates in
the data were unsold. As these plates did not possess a price, we followed previous studies in
dropping them from the dataset, leaving 50,698 entries available for the experiment.

The finalized data were randomly divided into three: training was conducted with 64 percent
of the data, validation was conducted with 16 percent, and the remaining 20 percent served as
the test set.

5.2 Training

I conducted a grid search to investigate the properties of different combinations of hyperpa-
rameters, varying the dimension of character embeddings (12, 24, 48, 96, 128, 256), the number of
recurrent layers (1, 3, 5, 7, 9), the number of fully connected layers (1, 3), the number of hidden
units in each layer (64, 128, 256, 512, 1024, 2048) and the dropout rate (0, .05, .1). A total of 1080
sets of hyperparameters were investigated.

Training was repeated under each set of hyperparameters 30 times with different initializa-
tions. During each training session, a network was trained for 40 epochs under mean-squared
error. An Adagrad optimizer with a learning rate of 0.001 and a gradient clip of 15 was used
throughout [35]. After training was completed, the best state based on the validation error was
reloaded for inference.

Training was conducted with a pair of NVIDIA GTX 1080s. To fully use the GPUs, a large
mini-batch size of 2,048 was used.4 The median training time on a single GPU ranged from 8
seconds for a 2-layer, 64-hidden-unit network with an embedding dimension of 12, to 1 minute
57 seconds for an 8-layer, 1,024-hidden-unit network with an embedding dimension of 24, and to
7 minutes 50 seconds for a 12-layer 2,048-hidden-unit network with an embedding dimension of
256.

Finally, I also trained recreations of models from previous studies as well as a series of fully-
connected networks and character n-gram models for comparison. Given that the maximum

4I also experimented with smaller batch sizes of 64 and 512. By keeping the training time constant, the smaller
batch size resulted in worse performance, due to the reduction in epochs.
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Table 1: Model Performance

Configuration Train RMSE Valid RMSE Test RMSE Train R2 Valid R2 Test R2

RNN
1024-24-7-1-.05 .5217 .5712 .5714 .8385 .8063 .8052
1024-48-7-1-.05 .5176 .5737 .5701 .8409 .8046 .8061

Woo et al. (2008) .7127 .7109 .7110 .6984 .7000 .6983
Ng et al. (2010) .7284 .7294 .7277 .6850 .6842 .6840
MLP 1024-24-8-.05 .7222 .7725 .7643 .6885 .6502 .6545
MLP 2048-24-8-.05 .5884 .7254 .7204 .7932 .6915 .6930
unigram kNN-10 .8945 1.004 .9997 .5221 .4086 .4088
(1-4)-gram kNN-10 .9034 1.012 1.013 .5125 .3996 .3931

Combined .5054 .5551 .5527 .8484 .8171 .8177
Combined + Extra .4874 .5296 .5298 .8590 .8335 .8325

Configuration of RNN is reported in the format of [Hidden Units]-[Embed. Dimension]-[Recurrent Layers]-[Fully
Connected Layers]-[Dropout Rate]. Configuration of MLP is reported in the same format except there is no
recurrent layer. Numbers for RNN, MLP and Ensemble models are the medians from 30 runs.

length of a plate is six characters, for the n-gram models I focused on n ≤ 4, and in each case
calculated a predicted price based on the median and mean of k closest neighbors from the
training data, where k = 1, 3, 5, 10, 20.

5.3 Model Performance

Table 1 reports the summary statistics for the best two sets of parameters out of the 1080 sets
specified in section 5.2, based on the median validation RMSE. The performance levels of these
models were quite close, with both able to explain more than 80 percent of the variation in prices.
As a comparison, Woo et al. (2008) and Ng et al. (2010), which represent recreations of the
regression models in [4] and [5], respectively, were capable of explaining only 70 percent of the
variation at most.5

The importance of having recurrent layers can be seen from the inferior performance of
the fully-connected network (MLP) with the same embedded dimension, number of layers and
neurons as the best RNN model. This model was only capable of explaining less than 66 percent
of the variation in prices. Even with double the neurons a MLP was only capable of explaining
69 percent of the variation.

In the interest of space, I include only two best-performing n-gram models based on median
prices of neighbors. Both models were significantly inferior to RNN and hedonic regressions,
being able to explain only 40 percent of the variation in prices. For unigram, the best validation
performance was achieved when k = 10. For n > 2, models with unlimited features have very
poor performance, as they generate a large number of features that rarely appear in the data.
Restricting the number of features based on occurances and allowing a range of n within a single
model improve performance, but never surpassing the performance of the simple unigram. The
performance of using median price and using mean price are very close, with a difference smaller
than 0.05 in all cases.

5To make the comparison meaningful, the recreations contained only features based on the characters on a
plate. Extra features such as date and price level are examined in Part 7.1.
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Figure 2: Actual vs Predicted Price. Plates
are grouped by their predicted price and
actual price, in bins of HK$1,000 ($128.2).
The size of the circle represent the number
of plates in a given bin.

Figure 3: Performance Fluctuations. The
histogram represents the best model’s val-
idation RMSE distribution. The red line
is the kernel density estimate of the distri-
bution. The two vertical lines indicate the
validation RMSE of the comparison models.

Figure 2 plots the relationship between predicted price and actual price from a representative
run of the best model, grouped in bins of HK$1,000 ($128.2). The model performed well for
a wide range of prices, with bins tightly clustered along the 45-degree line. It consistently
underestimated the price of the most expensive plates, however, suggesting that the buyers of
these plates had placed on them exceptional value that the model could not capture.

Figure 4 plots the variation in performance as the hyperparameters deviate from the best-
performing model. The effectiveness of deep networks has been previously noted and is also
demonstrated here. Performance improved significantly with a hidden unit count and a re-
current layer count, leveling off around 512 hidden units and 7 recurrent layers. Under the
hyperparameters of the best model, the median RMSE of a 1-layer model was 35 percent higher
than that of a 7-layer model, while that of a 64-units-per-layer model was 11 times that of a
1,024-units-per-layer model. However, there appears to be no benefit in stacking fully connected
layers: the model with three fully connected layers had a median RSME 24 percent higher than
that of the one-layer version.

Performance peaked out relatively early with the dimensionality of character embedding,
which is not surprising given there were only 33 possible characters.6 Unlike the hidden unit
count or the recurrent layer count, there is a clear sweet spot for the dimensionality of embedding,
and performance worsens rapidly as the dimensionality increases beyond that point.

A small amount of dropout was necessary to achieve good performance. Without dropout,
the model was much more likely to converge to local maxima, resulting in poor fit in many cases.

6The alphabets “I,” “O” and “Q” are not used to avoid confusion with “1” and “0”.
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Figure 4: Hyperparameters’ Effect on Model Performance. Each point represents the median
from 30 runs.

5.4 Model Stability

Unlike hedonic regressions, which give the same predictions and achieve the same performance
in every run, a neural network is susceptible to fluctuations due to convergence to local maxima.
These fluctuations can be smoothed out by combining the predictions of multiple runs of the
same model, although the number of runs necessary to achieve good results is then a practical
concern.

Figure 3 plots the kernel density estimate of validation RMSEs for the best model’s 30 training
runs. The errors are tightly clustered, with only one run producing particularly inaccurate
predictions. Excluding that run, the standard deviation of validation RMSE was only 0.034,
which suggests that in practice several runs should suffice.

6 Explaining the Predictions

Compared to models such as regression and n-gram it is relatively hard to understand the
rationale behind a RNN model’s prediction, given the large number of parameters involved and
the complexity of the their interaction. If the RNN model is to be deployed in the field, it would
need to be able to explain its prediction in order to convince human users to adopt it in practice.
One way to do so is to extract a feature vector for each plate by summing up the output of the
last recurrent layer over time. This feature vector is of the same size as the number of neurons in
the last layer, which can be fed into a standard k-nearest-neighbor model to provide a “rationale”
for the model’s prediction.

To demonstrate this procedure, I use the best RNN model in Table 1 to generate feature
vectors for all training samples. These samples are used to setup a k-NN model. When the user
submit a query, a price prediction is made with the RNN model, while a number of examples
are provided by the k-NN model as rationale.

Table 2 illustrate the outcome of this procedure with three examples. The model was asked
to predict the price of three plates, ranging from low to high value. The predicted prices are
listed in the Prediction section, while the Historical Examples section lists for each query the
top four entries returned by the k-NN model. Notice how the procedure focused on the numeric
part for the low-value plate and the alphabetical part for the middle-value plate, reflecting the
value of having identical digits and identical alphabets respectively. The procedure was also able
to inform the user that a plate has been sold before. Finally, the examples provided for the
high-value plate show why it is hard to obtain an accurate prediction for such plates, as the
historical prices for similar plates are also highly variable.

8



Table 2: Explaining Predictions with Automated Selection of Historical Examples

Plate Price Plate Price Plate Price

Prediction LZ3360 1000 MM293 5000 13 2182000

Historical Examples HC3360 1000 MM293 5000 178 195000
BG3360 3000 MM203 5000 138 1100000
HV3360 3000 MM923 9000 12 7100000
EC4360 1000 MM296 4000 198 500000

The plates listed in the Prediction section are user queries and the prices are predictions. The plates and their
corresponding prices listed in the Historical Examples section are historical data from the training sample.

7 Performance Enhancements

7.1 Ensemble Models

Combining several models is known to improve prediction accuracy. Two combinations are con-
sidered in this section: a combination of the preceding neural network and [4], and a combination
of these two models plus features not related to the characters on plates. In each case, the com-
bination was conducted through linear regression, with the prediction of each model acting as
features. The two models were thus implemented as follows:

y = α+ δ1yrnn + δ2ywoo (7)

y = α+ δ1yrnn + δ2ywoo +
∑
i

νixi (8)

where yrnn is the prediction of the neural network, ywoo the prediction of [4]’s regression model
with only the license-plate-specific features, and xi a series of additional features, including the
year and month of the auction, whether it was an afternoon session, the plate’s position within
the session’s ordering, the existence of a prefix, the number of digits, a log of the local market
stock index, and a log of the consumer price index. α, δ and ν were estimated by linear regression
on the training data.

Both models performed better than the neural network alone. The simple combined model
shown (Combined in Table 1) improved performance by slightly more than 1 percent as measured
by R2, while the additional features (Combined + Extra) improved performance by another 1.6
percentage points.

Overall, the ensemble models improved accuracy, but only by a small amount, suggesting
that the neural network was successful in explaining most of the variation in prices.

7.2 Retraining Over Time

Over time, a model could conceivably become obsolete if, for example, taste or the economic
environment changed. In this section, I investigate the effect of periodically retraining the model.

To retain sufficient samples for subsequent testing and retraining, the dataset was roughly
divided into two. Initial training was conducted with the first 8 years of data, which contained
25,990 samples. In the subsequent 5 years, retraining was conducted yearly, monthly, or never.
The best RNN-only model and the Combined + Extra model were used, with the sample size
kept constant in each retraining. The process was repeated 30 times as before.

Figure 5 plots the median RMSE and R2, evaluated monthly. For the RNN model with no
retraining prediction, accuracy dropped rapidly by both measures. RMSE dropped an average

9
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Figure 5: Impact of Retraining Frequency. The first two diagrams plot the monthly performance
of the best RNN model, while the last two diagrams plot the same for the Combined + Extra
model.

of 0.7 percent per month, while R2 dropped 0.3 percent per month. Yearly retraining was
significantly better, with a 12.1 percent lower RMSE and a 7.2 percent higher R2. The additional
benefit of monthly retraining was, however, much smaller. Compared with the yearly retraining,
there was only a 3.3 percent reduction in the RMSE and a 1.5 percent increase in the explanatory
power. The differences were statistically significant.7

For the ensemble model, the performance between different retraining frequencies was very
close, with a less than 4 percent difference in the RMSE and a less than 1 percent difference in
R2 when going from no retraining to monthly retraining. Nevertheless, the differences remained
statistically significant, as retraining every month did improve accuracy. The performance of
the ensemble model was also considerably more stable than the RNN alone, with only half of
the volatility at every retraining frequency. The primary reason behind this difference was the
RNN’s inability to account for extreme prices, particularly at month 12, 24 and 46. Auctions in
these three months had an unusually high number of valuable plates, resulting in average sold
prices that were 15 to 20 times higher than the overall average. The ensemble model was able
to predict these extreme prices because [4] handcrafted features specifically for these valuable
plates.

These results suggest that while there is a clear benefit in periodical retraining, this benefit
diminishes rapidly beyond a certain threshold. Moreover, while deep RNN generally outperforms
handcrafted features, the latter could be used to capture outliers.

7Wilcoxon Sign-Rank Tests:
RNN yearly retraining = RNN no retraining: z = −6.257, p = 0.000
RNN monthly retraining = RNN yearly retraining: z = −4.923, p = 0.000
Combined yearly retraining = Combined no retraining: z = −6.062, p = 0.000
Combined monthly retraining = Combined yearly retraining: z = −5.319, p = 0.000
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8 Concluding Remarks

This study demonstrates that a deep recurrent neural network can provide good estimates of
license plate prices, with significantly higher accuracy than other models. The deep RNN is
capable of learning the prices from the raw characters on the plates, while other models must
rely on handcrafted features. With modern hardware, it takes only a few minutes to train the
best-performing model described previously, so it is feasible to implement a system in which the
model is constantly retrained for accuracy.

Notwithstanding this good performance, several areas can be further improved.
First, the ensemble models in this study were constructed with linear regression. The use of

another neural network instead of linear regression may better capture the high-order interac-
tions between the characters on the plate and the other features, thereby further improving the
performance of the model.

Second, while the model outputs only a single price estimate, auctions that provide estimates
typically give both a high and a low estimate. As there is only one realized price to train on for
each sample, designing a model that can output a meaningful range of estimates is a non-trivial
task; a range that is too narrow will often be violated, while one that is too broad will be of no
practical use.

Finally, the performance of the model on personalized plates has yet to be studied. Per-
sonalized plates contain owner-submitted sequences of characters and so may have vastly more
complex meanings. Exactly how the model should be designed—for example, whether there
should be separate models for different types of plates, or whether pre-training on another text
corpus could help—remains to be studied.
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