Regression Adjustment with Artificial Neural Networks

Vinci Chow The Chinese University of Hong Kong

November 1^{st} 2016

Motivation

- Age of Big Data: data comes in a rate and in a variety of types that exceed our ability to analyse it
 - Texts, image, speech, video...
- Real motivation: a project Travis and I are working on studying whether an "afternoon effect" exists in local license plate auctions
 - Value of license plates mostly depend on aesthetic and superstitious factors
 - E.g. **168** would be more valuable than **861**
 - Hard to study. Previous studies resort to a large number of dummies

Regression Adjustment

- When treatment assignment correlates with untreated outcome, simple difference between treatment and control outcomes cannot estimate the true effect
 - In the aforementioned case, we cannot be sure that valuable plates were evenly divided between morning and afternoon auction sessions

• **Regression adjustment** is one of the standard remedy

- Fit two models, one for treatment and one for control
- The models are used to generate counterfactual outcomes
- The estimated treatment effect is the average difference between observations' real and counterfactual outcomes

Main Idea

- Estimating the value of a plate is essentially a *translation* task
 - Translate a bunch of letters and numbers to a value
- Use **machine learning** models that are known to work well in automated translation
 - Think Siri and Google Translate
- Issue: Statistical properties of such models are not necessarily suitable for hypothesis testing. Examples:
 - Ridge regression and lasso are biased
 - Bayes rule under the assumption of uncorrelated covariates (*Naïve Bayes*) is a decent discrete choice model but a poor estimator
- Use simulations to study the properties of using such models

Machine Learning

- Computer scientists have studied these data types under the umbrella of machine learning
 - This includes familiar statistically techniques such as regression and maximum likelihood
 - Less common (to econometricians) such as k-neighbors, regression trees and artificial neural networks
 - To statisticians, machine learning is kind of like econometrics new names, not necessarily new stuff
 - Objective is usually accurate prediction, hypothesis testing is rare
- Artificial neural networks have been shown to work well with complex data

Artificial Neural Network

- Artificial Neural Networks are *biologically-inspired* models, consisting of interconnected neurons
- As a simple example, suppose each observation has three independent variables x_i
- The values of these three variables are fed to a number of **hidden neurons**, which combine them linearly and transform them with an **activation** function $F(\cdot)$

$$F(b_j + \sum w_{ji}x_i)$$

• The activation function is either logistic, tanh or most recently, *rectified linear unit*:

 $F(z) = \max(0, z)$

• b_j and w_{ji} need to be fitted

Artificial Neural Network

- The outputs from the hidden neurons are fed into the output neurons, which combine them linearly and transform them again
- The number of output neurons depends on the nature of the dependent variable
 - Single output neuron for linear or binary dependent variable
 - Multiple output neurons for categorical variable, each representing a score for a category. The outputs of all output neurons would be combined through a softmax function— i.e. multinomial logit

Artificial Neural Network

- Parameter estimate is conducted through back propagation
 - The residual (ŷ y) is used to correct the parameters in each layer through repeated use of chain rule
 - This process could become unstable as the number of layers increase
 - Techniques developed to overcome this problem: carefully chosen initial values, variable learning rates and normalize output values after every layer

Source: colah's blog

Deep Learning

- **Deep Learning** refers to the stacking of multiple hidden layers
 - Typically in the single digit, but can go as high as a hundred layers

Different Types of ANN

- Convolutional Neural Networks
 - Each neuron is only connected to neighboring neurons

Source: WILDML

- Recurrent Neural Networks
 - Auto-regressive neurons with the ability to forget

Source: colah's blog

Computation

- The idea of artificial neural network can be traced back to the 1940s
- Due to the large number of parameters and large data size involved, effective use of ANN is prohibitive until recently
- ANN took off in recent years due to massive increase in computational capabilities, particularly in the use of graphic processing unit (GPU) for computation

(3 variables + intercept) \times 5 hidden neurons = 20 parameters to fit

(30 variables + intercept) \times 1000 hidden neurons \times 5 layers

= 155,000 parameters to fit

TESLA P100 THE MOST ADVANCED HYPERSCALE DATACENTER GPU EVER BUILT

150B XTORS | 5.3TF FP64 | 10.6TF FP32 | 21.2TF FP16 | 14MB SM RF | 4MB L2 Cache

Hyperparameters

- The number of neurons per layer, the number and types of layers to use as well as the rate of learning has to be hand picked. These are called hyperparameters
- Hyperparameters are chosen through cross validation
 - 1. Separate data into 3 sets: train, validation and test
 - 2. The train set is used to train the model. This is repeated for every combination of hyperparameters
 - 3. The combination of hyperparameters that best predicts the validation set is chosen
 - 4. The test set is only used for reporting the goodness-of-fit of the chosen hyperparameters

Simulation

• Data-generating process is linear

 $y = \sum \beta_i x_i + \sum \delta_{jk} x_j x_k + \sum \gamma_{lmn} x_l x_m x_n + \cdots$

- 3000 samples (larger samples in progress)
- No. of x: 10, 50, 100
 Multinomial distribution with uniformly distributed correlation
- No. of high-order correlation: 0%, 50%, 100%, 200% of no.
 of x, ranging from 2nd order to 4th order
- β , δ , γ : uniformly distributed
- Mean 0 and SD 10

Simulation

- Treatment assignment
 - Baseline probability: 50%
 - Bonus for observations with y > 0 ranging from -20% to +20%
- Treatment effect
 - Ranges from -2 to +10
- Model
 - Layers: 1-4 layers
 - Number of neurons: 10 to 500
- 30 runs for every set of parameters. Report median estimates

Regression Adjustment + Neural Network

3. Regression Adjustment

Estimate treatment effect

• Pure neural network (MLP) works better than OLS when the number of interaction terms is high

Settings: treatment effect=2, treatment chance bonus=0.2, single layer of 100 neurons

Improving Neural Network's Performance

3. Regression Adjustment

Estimate treatment effect

- Pure neural network (MLP) works better than OLS when the number of interaction terms is high
- Feeding the predicted values from a neural network into OLS works best (MLP-OLS)

Settings: treatment effect=2, treatment chance bonus=0.2, single layer of 100 neurons

 Adding 1st order interaction terms to OLS greatly improves its performance, but MLP-OLS is still better when high order interaction terms exist

Settings: treatment effect=2, treatment chance bonus=0.2, single layer of 100 neurons

 Across different treatment assignment bonus and treatment effects, MLP-OLS works better than OLS in most cases

Settings: high order interactions, single layer of 100 neurons

Choosing the Right Parameters

- There is always a neural network that work better than OLS, but not necessarily the same one
- Cross-validation is necessary

Settings: high order interactions

Distribution of Estimate Errors

• MLP-OLS appears unbiased while pure MLP does not

License Plate Data

- Recurrent neural network
 - 7 recurrent layers, 256 neurons per layer
 - Each character on license plate represented by 96 parameters

