
Regression Adjustment with Artificial Neural Networks



• Age of Big Data: data comes in a rate and in a variety 
of types that exceed our ability to analyse it
 Texts, image, speech, video…

• Real motivation: a project Travis and I are working on 
studying whether an “afternoon effect” exists in local 
license plate auctions
 Value of license plates mostly depend on aesthetic and 

superstitious factors

 E.g. 168 would be more valuable than 861

 Hard to study. Previous studies resort to a large number of 
dummies



• When treatment assignment correlates with untreated 
outcome, simple difference between treatment and 
control outcomes cannot estimate the true effect

 In the aforementioned case, we cannot be sure that valuable 
plates were evenly divided between morning and afternoon 
auction sessions 

• Regression adjustment is one of the standard remedy

 Fit two models, one for treatment and one for control

 The models are used to generate counterfactual outcomes

 The estimated treatment effect is the average difference between 
observations’ real and counterfactual outcomes



• Estimating the value of a plate is essentially a translation task
 Translate a bunch of letters and numbers to a value

• Use machine learning models that are known to work well in 
automated translation
 Think Siri and Google Translate

• Issue: Statistical properties of such models are not necessarily 
suitable for hypothesis testing. Examples:
 Ridge regression and lasso are biased

 Bayes rule under the assumption of uncorrelated covariates (Naïve 
Bayes) is a decent discrete choice model but a poor estimator

• Use simulations to study the properties of using such models



• Computer scientists have studied these data types under 
the umbrella of machine learning

 This includes familiar statistically techniques such as regression 
and maximum likelihood 

 Less common (to econometricians) such as k-neighbors, 
regression trees and artificial neural networks

 To statisticians, machine learning is kind of like econometrics—
new names, not necessarily new stuff

 Objective is usually accurate prediction, hypothesis testing is rare

• Artificial neural networks have been shown to work well 
with complex data



• Artificial Neural Networks are 
biologically-inspired models, consisting 
of interconnected neurons

• As a simple example, suppose each 
observation has three independent 
variables 𝑥𝑖

• The values of these three variables are 
fed to a number of hidden neurons, 
which combine them linearly and 
transform them with an activation 
function 𝐹(⋅)

𝐹 𝑏𝑗 + ∑𝑤𝑗𝑖𝑥𝑖

• The activation function is either logistic, 
tanh or most recently, rectified linear 
unit:

𝐹 𝑧 = max 0, 𝑧

• 𝑏𝑗 and 𝑤𝑗𝑖 need to be fitted

Source: colah’s blog



• The outputs from the hidden 
neurons are fed into the output 
neurons, which combine them 
linearly and transform them again

• The number of output neurons 
depends on the nature of the 
dependent variable
 Single output neuron for linear or 

binary dependent variable

 Multiple output neurons for 
categorical variable, each 
representing a score for a category. 
The outputs of all output neurons 
would be combined through a 
softmax function— i.e. multinomial 
logit

Source: colah’s blog



• Parameter estimate is 
conducted through back 
propagation 

 The residual (  𝑦 − 𝑦) is used to 
correct the parameters in each 
layer through repeated use of 
chain rule

 This process could become 
unstable as the number of layers 
increase

 Techniques developed to 
overcome this problem: carefully 
chosen initial values, variable 
learning rates and normalize 
output values after every layer

Source: colah’s blog



• Deep Learning refers to the stacking of multiple hidden layers
 Typically in the single digit, but can go as high as a hundred layers

Source: Nvidia



• Convolutional Neural Networks

 Each neuron is only connected to neighboring neurons

• Recurrent Neural Networks

 Auto-regressive neurons with the ability to forget

Source: colah’s blog

Source: WILDML



• The idea of artificial 
neural network can be 
traced back to the 1940s

• Due to the large number 
of parameters and large 
data size involved, 
effective use of ANN is 
prohibitive until recently

• ANN took off in recent 
years due to massive 
increase in computational 
capabilities, particularly 
in the use of graphic 
processing unit (GPU) for 
computation

Source: Nvidia

(3 variables + intercept) × 5 hidden neurons 
= 20 parameters to fit

(30 variables + intercept) × 1000 hidden neurons
× 5 layers
= 155,000 parameters to fit



• The number of neurons per layer, the number and types of 
layers to use as well as the rate of learning has to be hand 
picked. These are called hyperparameters 

• Hyperparameters are chosen through cross validation

1. Separate data into 3 sets: train, validation and test

2. The train set is used to train the model. This is repeated for 
every combination of hyperparameters

3. The combination of hyperparameters that best predicts the 
validation set is chosen

4. The test set is only used for reporting the goodness-of-fit of the 
chosen hyperparameters 



• Data-generating process is linear
𝑦 = ∑𝛽𝑖𝑥𝑖 + ∑𝛿𝑗𝑘𝑥𝑗𝑥𝑘 + ∑𝛾𝑙𝑚𝑛𝑥𝑙𝑥𝑚𝑥𝑛 + ⋯

 3000 samples (larger samples in progress)

 No. of 𝑥: 10, 50, 100

Multinomial distribution with uniformly distributed 
correlation

 No. of high-order correlation: 0%, 50%, 100%, 200% of no. 
of 𝑥, ranging from 2nd order to 4th order

 𝛽, 𝛿, 𝛾: uniformly distributed

 Mean 0 and SD 10



• Treatment assignment
 Baseline probability: 50%
 Bonus for observations with y > 0 ranging from -20% to +20%

• Treatment effect
 Ranges from -2 to +10

• Model
 Layers: 1-4 layers
 Number of neurons: 10 to 500

• 30 runs for every set of parameters. Report median 
estimates
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• Pure neural network (MLP) works better than OLS when the 
number of interaction terms is high

Settings: treatment effect=2, treatment chance bonus=0.2, single layer of 100 neurons 
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• Pure neural network (MLP) works better than OLS when the 
number of interaction terms is high

• Feeding the predicted values from a neural network into OLS 
works best (MLP-OLS)

Settings: treatment effect=2, treatment chance bonus=0.2, single layer of 100 neurons 
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• Adding 1st order interaction terms to OLS greatly 
improves its performance, but MLP-OLS is still better 
when high order interaction terms exist

Settings: treatment effect=2, treatment chance bonus=0.2, single layer of 100 neurons 
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• Across different treatment assignment bonus and 
treatment effects, MLP-OLS works better than OLS in 
most cases

Settings: high order interactions, single layer of 100 neurons 
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• There is always a neural network that work better 
than OLS, but not necessarily the same one

• Cross-validation is necessary

Settings: high order interactions
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• MLP-OLS appears unbiased while pure MLP does not
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• Recurrent neural network
 7 recurrent layers, 256 neurons per layer
 Each character on license plate represented by 96 parameters


