## Stata

Stata is a statistical software with two notable features:

- It can be used interactively through its graphical interface and command input box, or run pre-written scripts. This makes it easier to learn than many other statistical software.
- It only operates on one dataset at a time and all data is loaded into memory. This allows Stata to operate faster than harddisk-based software such as SAS, but you can run into space problem if your dataset is very, very large.



| 1. Log File. Reeping a record of the commands used and the results generated. |                                                    |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|
| Command                                                                       | Example                                            |  |  |  |
| log using "filename", text                                                    | log using                                          |  |  |  |
|                                                                               | "D:\Economics\log.txt",text                        |  |  |  |
| log close                                                                     | log close                                          |  |  |  |
|                                                                               | Command<br>log using "filename", text<br>log close |  |  |  |

## **1.** Log File: Keeping a record of the commands used and the results generated.

# **2.** Importing: We can import excel files into Stata's Data Editor and then save them as dta format.

| Description                | Command                                   | Example                              |
|----------------------------|-------------------------------------------|--------------------------------------|
| Import an Excel file, also | import excel using                        | import excel using                   |
| known as a workbook,       | "filename"                                | "D:\Economics\company_record.xlsx"   |
| into Stata's Data Editor   |                                           |                                      |
| Import an Excel file and   | import excel using                        | import excel using                   |
| treat the first row as     | "filename", <b>firstrow</b>               | "D:\Economics\company_record.xlsx",  |
| variable names             |                                           | firstrow                             |
| Save the workbook into a   | save "filename"                           | save "D:\Economics\company_record"   |
| dta format                 |                                           |                                      |
| Import another excel file  | Import excel using                        | import excel using                   |
| into Stata's Data Editor   | <i>"filename"</i> , firstrow <b>clear</b> | "D:\Economics\employee_survey.xlsx", |
| Note: Data editor cannot   |                                           | firstrow clear                       |
| contain two datasets, so   |                                           |                                      |
| we need to clear the       |                                           |                                      |
| previous one               |                                           |                                      |
| Save the workbook into a   | save "filename"                           | save "D:\Economics\                  |
| dta format                 |                                           | employee_survey"                     |
| If the dta file already    | save "filename", <b>replace</b>           | save                                 |
| exists, overwrite with     |                                           | "D:\Economics\employee_survey",      |
| replace                    |                                           | replace                              |
|                            |                                           |                                      |

| Description                  | Command                              | Example                        |
|------------------------------|--------------------------------------|--------------------------------|
| First, clear the data in the | clear                                | clear                          |
| data editor                  |                                      |                                |
| load a dta file in the data  | <b>use</b> "filename"                | use                            |
| editor                       |                                      | "D:\Economics\company_record"  |
| The above two steps can be   | use " <i>filename", <b>clear</b></i> | use                            |
| combined into one            |                                      | "D:\Economics\company_record", |
| command                      |                                      | clear                          |

Note: A newer version of Stata can open datasets saved by an older version of Stata, but the reverse is not true.

## 3b. Change Working Directory

|                                | 017                    |                      |
|--------------------------------|------------------------|----------------------|
| Description                    | Command                | Example              |
| Alternatively, we can first    | cd "directory"         | cd "D:\Economics\"   |
| change the working             |                        |                      |
| directory before loading a     |                        |                      |
| stata dataset, to avoid        |                        |                      |
| typing again the full address. |                        |                      |
| Then, load a dta file in the   | use " <i>filename"</i> | use "company_record" |
| data editor                    |                        |                      |

## **3c.** Merging Datasets

| Je. Merging Datasets                                                                                                            |                                                                                                                 |                                         |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Description                                                                                                                     | Command                                                                                                         | Example                                 |
| Merge: Merging a dataset to<br>another dataset in the<br>memory of the Data Editor,<br>matching on one or more key<br>variables | merge 1:1 variables using<br>"filename"<br>merge 1:m variables using<br>"filename"<br>merge m:1 variables using | merge 1:1 id using<br>"employee_survey" |
|                                                                                                                                 | "filename"<br>merge m:m variables using<br>"filename"                                                           |                                         |
| Append: Adding data to<br>bottom of the existing dataset                                                                        | append using "filename"                                                                                         | append using<br>"company_record_2"      |

|      | )ata Ed | itor (Edit) - [dat | ta - company re | cord.dta]   |        |        |              |           |          |          | A    |             | ۰. |                 |                | x   |
|------|---------|--------------------|-----------------|-------------|--------|--------|--------------|-----------|----------|----------|------|-------------|----|-----------------|----------------|-----|
| File | e Edi   | t View Data        | a Tools         |             |        |        |              |           |          |          |      |             |    |                 |                |     |
| 1    |         | 6 B 🖬 🖻            | H 🍸 🚼 🚰 G       | <u>ei -</u> |        |        |              |           |          |          |      |             |    |                 |                |     |
|      |         | id[1]              |                 | 1           |        |        |              |           |          |          |      |             |    |                 |                |     |
|      |         | id                 | hour 1ywage     | experience  | tenure | gender | martialsta~s | education | free_edu | motheduc | sibs | _merge      |    | Variables       |                | ą   |
| ŝ    | 1       | 1                  | 3.1             | 2           | 0      | F      | not married  | 11        | 0        | 12       | 1    | matched (3) |    | 🔧 Filter variat | oles here      |     |
| 1st  | 2       | 2                  | 3.24            | 22          | 2      | F      | married      | 12        | 1        | 7        | 1    | matched (3) |    | Variable        | Label          | -   |
| ots  | 3       | 3                  | 3               | 2           | 0      | м      | not married  | 11        | 1        | 12       | 1    | matched (3) |    | ₩ id            | id             | - 1 |
| -    | 4       | 4                  | 6               | 44          | 28     | м      | married      | 8         | 0        | 7        | 4    | matched (3) |    | M hourlywage    | hourly wage    |     |
|      | 5       | 5                  | 5.3             | 7           | 2      | м      | married      | 12        | 0        | 12       | 10   | matched (3) |    | experience      | experience     |     |
|      | 6       | 6                  | 8.75            | 9           | 8      | м      | married      | 16        | 1        | 14       | 1    | matched (3) |    | ₩ tenure        | tenure         |     |
|      | 7       | 7                  | 11.25           | 15          | 7      | м      | not married  | 18        | 1        | 14       | 1    | matched (3) |    | ₽ gender        | gender         |     |
|      | 8       | 8                  | 5               | 5           | 3      | F      | not married  | 12        | 0        | 3        | 2    | matched (3) |    | Martialstatus   | martial status |     |
|      | 9       | 9                  | 3.6             | 26          | 4      | F      | not married  | 12        | 0        | 7        | 2    | matched (3) | 1  | education       | education      |     |
|      | 10      | 10                 | 18.18           | 22          | 21     | м      | married      | 17        | 1        | 7        | 1    | matched (3) |    | Ø free_edu      | free_edu       |     |
|      |         |                    |                 |             |        |        |              |           |          |          |      |             |    | M motheduc      | motheduc       |     |
|      |         |                    |                 |             |        |        |              |           |          |          |      |             |    | ₩ sibs          | sibs           | -   |
|      |         |                    |                 |             |        |        |              |           |          |          |      |             |    | Deservation     |                |     |

## Fig. 2 Merged dataset

## 3d. Data frames (Stata 16 onwards)

| Description                   | Command               | Example                           |
|-------------------------------|-----------------------|-----------------------------------|
| Create a frame                | frame create name     | frame create survey               |
| Change current frame          | frame change name     | frame change survey               |
|                               |                       | frame change default              |
| Delete frame                  | frame drop name       | frame drop survey                 |
| Do something on a frame       | frame name:           | frame survey: use employee_survey |
|                               | frame name { }        |                                   |
| Link with another frame       | frlink m:n variables, | frlink 1:1 id, frame(survey)      |
|                               | frame( <i>name</i> )  |                                   |
| Fetch data from another frame | <b>frget</b> varname, | frget education, from(survey)     |
|                               | from( <i>name</i> )   |                                   |

#### Stata Workshop ver. 3.1

## http://www.ticoneva.com/econ/stata-workshop/

## 4. Manipulate Data

| Description            | Command                          | Example                         |
|------------------------|----------------------------------|---------------------------------|
| Adding a new variable  | generate new_var =               | gen log_edu = log(education)    |
| Modifying a variable   | <b>replace</b> <i>variable</i> = | replace log_edu = ln(education) |
| Drop a variable        | drop variable                    | drop log_edu                    |
| Drop an observation    | drop if variable =               | drop if id == 11                |
| Switch between the two | reshape                          | (Read Stata's help file if you  |
| common ways of storing |                                  | need this function)             |
| groups of data         |                                  |                                 |

Note: Type "function" in the viewer for a list of available functions. Stata follows the common programming convention of using "=" for assignment(i.e. modification of data) and "==" for comparison.

#### 5. Summarize: to obtain summary statistics

| Description                    | Command                            | Example                |
|--------------------------------|------------------------------------|------------------------|
| Summarize                      | sum                                | sum                    |
| Summarize a variable           | sum <i>variable</i>                | sum hourlywage         |
| Summarise a variable in detail | sum <i>variable,</i> <b>detail</b> | sum hourlywage, detail |

#### 6. Making a table

| Description                                                              | Command                                             | Example                                                            |
|--------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------|
| Making a table of summary statistics: Make a table with certain contents | <b>table</b> variable1 variable2, statistic(option) | table gender free_edu,<br>stat(median hourlywage)                  |
|                                                                          |                                                     | table gender free_edu,<br>stat(median hourlywage sd<br>hourlywage) |



An example of *Table* command output

#### Stata Workshop ver. 3.1

#### 7. Correlation

| Description                        | Command                                                  | Example                    |
|------------------------------------|----------------------------------------------------------|----------------------------|
| Correlations (covariances) of      | correlate variable1                                      | corr hourlywage experience |
| variables                          | variable2 variable3                                      | education                  |
|                                    | hourly~e experi~e educ                                   | at~n                       |
| hourlywag<br>experienc<br>educatio | e   1.0000<br>e   0.1940 1.0000<br>n   0.7592 -0.2218 1. | 0000                       |

An example of *Correlation* command output

#### 8. T-Test

| Description                              | Command                                  | Example                                                |  |  |  |  |  |  |
|------------------------------------------|------------------------------------------|--------------------------------------------------------|--|--|--|--|--|--|
| T-test: compare the means of             | <b>ttest</b> variable1 = varial          | <i>ble2</i> ttest education = motheduc                 |  |  |  |  |  |  |
| two variables                            |                                          |                                                        |  |  |  |  |  |  |
| . ttest education = motheduc             |                                          |                                                        |  |  |  |  |  |  |
| Paired t test                            |                                          |                                                        |  |  |  |  |  |  |
| Variable   Obs                           | Mean Std.Err. S                          | td. Dev. [95% Conf. Interval]                          |  |  |  |  |  |  |
| educat~n   10<br>motheduc   10           | 12.9 .9826269 3<br>9.5 1.185561 3        | .107339 10.67714 15.12286<br>.749074 6.818074 12.18193 |  |  |  |  |  |  |
| diff   10                                | 3.4 1.240072 3                           | .921451 .594763 6.205237                               |  |  |  |  |  |  |
| mean(diff) = mean(<br>Ho: mean(diff) = 0 | (education - motheduc)                   | t = 2.7418<br>degrees of freedom = 9                   |  |  |  |  |  |  |
| Ha: mean(diff) < 0<br>Pr(T < t) = 0.9886 | Ha: mean(diff) !=<br>Pr( T  >  t ) = 0.0 | = 0 Ha: mean(diff) > 0<br>1228 Pr(T > t) = 0.0114      |  |  |  |  |  |  |

An example of *ttest* command output for test of two variables

| Description                                            |                  | Comma                | ind         |              | Example          |                  |  |
|--------------------------------------------------------|------------------|----------------------|-------------|--------------|------------------|------------------|--|
| T-test: compare the                                    | f ttest va       | riable1, <b>by(g</b> | roupvar)    | ttest hourly | wage, by(gender) |                  |  |
| two groups within t                                    |                  |                      |             |              |                  |                  |  |
| variable                                               |                  |                      |             |              |                  |                  |  |
| Note: arounvar.con                                     | only take        | on two val           | 105         |              |                  |                  |  |
| Note. groupvur can                                     |                  | UT LWO Val           | ues         |              |                  |                  |  |
| . ttest hour                                           | lywage, b        | y(gender)            |             |              |                  |                  |  |
| Two-sample t test with equal variances                 |                  |                      |             |              |                  |                  |  |
|                                                        |                  |                      |             |              |                  |                  |  |
| Group                                                  | Obs              | Mean                 | Std. Err.   | Std. Dev.    | [95% Conf.       | Intervalj        |  |
| F                                                      | 4                | 3.735                | .4346167    | .8692334     | 2.351856         | 5.118144         |  |
| M I                                                    | 6                | 8.746667             | 2.218876    | 5.435114     | 3.042864         | 14.45047         |  |
| combined                                               | 10               | 6.742                | 1.528432    | 4.833326     | 3.284447         | 10.19955         |  |
| diff                                                   |                  | -5.011667            | 2.794796    |              | -11.45648        | 1.433145         |  |
| 1:00                                                   |                  |                      |             |              |                  | 1 0000           |  |
| $\begin{array}{r} dlff = m\\ Ho: dlff = 0 \end{array}$ | iean(F) - :<br>] | mean(M)              |             | degrees      | t<br>of freedom  | = -1.7932<br>= 8 |  |
| Ha: diff                                               | < 0              |                      | Ha: diff != | 0            | Ha: d            | iff > 0          |  |
| $\Pr(T < t) =$                                         | : U.U553         | Pr(                  | TI > Itl) = | 0.1107       | $\Pr(T > t$      | ) = 0.9447       |  |

An example of *ttest* command output for test of two groups within the same variable

## Stata Workshop ver. 3.1

## http://www.ticoneva.com/econ/stata-workshop/

## 9a. Histogram

| Description                      | Command                             | Example                         |
|----------------------------------|-------------------------------------|---------------------------------|
| Histogram of a variable          | hist variable                       | hist education                  |
| Histogram of a variable, with    | hist <i>variable, <b>bin(n)</b></i> | hist education, bin(5)          |
| n blocks (Fig 3)                 |                                     |                                 |
| Histogram of a variable, with    | hist variable, bin(n) fraction      | hist education, bin(5) fraction |
| n blocks, and y axis as fraction |                                     |                                 |
| (Fig 4)                          |                                     |                                 |



## 9b. Scatter Graph

| Description                   | Command                                   | Example                      |
|-------------------------------|-------------------------------------------|------------------------------|
| Plot a scatter graph          | scatter variable1 variable2               | scatter hourlywage education |
| Plot two scatter subgraphes , | scatter variable1 variable2,              | scatter hourlywage educ,     |
| being placed beside each      | by( <i>variable3</i> )                    | by(gender)                   |
| other (Fig 5)                 |                                           |                              |
| Plot two subgraphes, one      | scatter variable1 variable2 if            | scatter hourlywage educ if   |
| placing on another (Fig 6)    | <pre>variable3 == value1    scatter</pre> | gender == "M"    scatter     |
|                               | variable1 variable2 if                    | hourlywage educ if gender == |
|                               | <i>variable3</i> == value2                | "F"                          |



Fig 6

#### Stata Workshop ver. 2.1

http://www.ticoneva.com/econ/stata-workshop/

### 10a. Regression

| Description                        | (                               | Comma                     | nd                                |                         | Example                                                                                  |  |  |
|------------------------------------|---------------------------------|---------------------------|-----------------------------------|-------------------------|------------------------------------------------------------------------------------------|--|--|
| Ordinary Least Squa                | <u>re</u> <b>r</b>              | egress                    | dep_variable                      |                         | reg hourlywage experience                                                                |  |  |
|                                    | i                               | ndep_v                    | ariables                          |                         | tenure                                                                                   |  |  |
| . reg hourlywage experience tenure |                                 |                           |                                   |                         |                                                                                          |  |  |
| Source                             | 22                              | d f                       | MS                                |                         | Number of obs = $10$                                                                     |  |  |
| Model  <br>Residual                | 108.737034<br>101.512326        | 2<br>7                    | 54.3685168<br>14.5017609          |                         | F(2, 7) = 5.75<br>Prob > F = 0.0782<br>R-squared = 0.5172<br>$Ads B_{accurred} = 0.2702$ |  |  |
| Total                              | 210.24936                       | 9                         | 23.36104                          |                         | Root MSE = 3.8081                                                                        |  |  |
| hourlywage                         | Coef.                           | Std. I                    | Err, t                            | P>Itl                   | [95% Conf. Interval]                                                                     |  |  |
| experience  <br>tenure  <br>_cons  | 2491599<br>.5712551<br>6.294649 | .1541<br>.21664<br>1.9138 | 775 -1.62<br>466 2.64<br>357 3.29 | 0.150<br>0.034<br>0.013 | 6137318 .115412<br>.0589673 1.083543<br>1.769097 10.8202                                 |  |  |

An example of regress command

#### 10b. Regression with dummy variables:

| A                                                                                            | <u>Alternatively</u> , use <b>xi</b>                             | xi i.gender                 |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|
| =<br>r:<br>v<br>=                                                                            | <pre>####################################</pre>                  | gender ivi                  |
| <u>S</u>                                                                                     | <u>Step2:</u> replace the name of                                | replace gender_dummy = 1 if |
| First, we have to generate <u>S</u><br>dummy variables for <u>d</u><br>qualitative variables | <u>Step1:</u> generate the name of<br>dummy variable = 0 (Fig 7) | generate gender_dummy = 0   |

|                             | <u>raternativerp</u> use ki | Xi iigenaei               |
|-----------------------------|-----------------------------|---------------------------|
| Then, we do regression with | reg variable1 variable2 the | reg hourlywage experience |
| the dummy variables         | name of dummy variable      | tenure gender_dummy       |







| Description                                                                                                 | Command                                                                           | Example                                                  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|
| If there are too many values<br>for the dummy variable, we<br>can encode the variable into<br>numeric first | <b>encode</b> variable,<br>generate(new numeric<br>dummy variable)                | encode martialstatus,<br>generate(martialstatus_numeric) |
| Then, run fixed effect regression                                                                           | <b>xtreg</b> dep_variable<br>indep_variables, fe i(new<br>numeric dummy variable) | xtreg hourlywage tenure, fe<br>i(martialstatus_numeric)  |

#### 11. Fixed-Effect Regression

| 2    | 🞽 🖬 🖎 🛃 🏦 🝸 🛗 🐨 🐽 🖕 |                  |          |             |              |              |  |  |  |  |
|------|---------------------|------------------|----------|-------------|--------------|--------------|--|--|--|--|
|      |                     | martialstatus_nu | meric[9] | 2           |              |              |  |  |  |  |
| 2    |                     | motheduc         | sibs     | _merge      | gender dummy | martialsta~c |  |  |  |  |
| S    | 1                   | 12               | 1        | matched (3) | 0            | not married  |  |  |  |  |
| sde  | 2                   | 7                | 1        | matched (3) | 0            | married      |  |  |  |  |
| lots | 3                   | 12               | 1        | matched (3) | 1            | not married  |  |  |  |  |
|      | 4                   | 7                | 4        | matched (3) | 1            | married      |  |  |  |  |
|      | 5                   | 12               | 10       | matched (3) | 1            | married      |  |  |  |  |
|      | 6                   | 14               | 1        | matched (3) | 1            | married      |  |  |  |  |
|      | 7                   | 14               | 1        | matched (3) | 1            | not married  |  |  |  |  |
|      | 8                   | 3                | 2        | matched (3) | 0            | not married  |  |  |  |  |
|      | 9                   | 7                | 2        | matched (3) | 0            | not married  |  |  |  |  |
|      | 10                  | 7                | 1        | matched (3) | 1            | married      |  |  |  |  |
|      |                     |                  |          |             |              |              |  |  |  |  |

Output of *encode*. The leftmost variable is in fact numeric, but is labeled.

. xtreg hourlywage tenure, fe i(martialstatus\_numeric)

| Fixed-effects<br>Group variable    | (within) reg<br>: martialsta       | Number o<br>Number o | f obs =<br>f groups = | 10<br>2            |                                |                      |
|------------------------------------|------------------------------------|----------------------|-----------------------|--------------------|--------------------------------|----------------------|
| R-sq: within<br>between<br>overall | = 0.2532<br>= 1.0000<br>= 0.3370   |                      |                       | Obs per            | group: min =<br>avg =<br>max = | 5.0<br>5.0           |
| Corr(u_i, Xb)                      | = 0.5227                           |                      |                       | F(1,7)<br>Prob > F | =                              | 2.37<br>0.1673       |
| hourlywage                         | Coef.                              | Std. Err.            | t                     | P>Itl              | [95% Conf.                     | Interval]            |
| tenure  <br>_Cons                  | .2832131<br>4.617902               | .1838511<br>1.971669 | 1.54<br>2.34          | 0.167<br>0.052     | 1515256<br>0443534             | .7179517<br>9.280157 |
| sigma_u  <br>sigma_e  <br>rho      | .31239775<br>4.4566344<br>.0048896 | (fraction o          | of varian             | ice due to         | u_i)                           |                      |
| F test that al                     | l u_i=0:                           | F(1, 7) =            | 0.02                  |                    | Prob >                         | F = 0.8975           |
|                                    |                                    | An example of        | x <i>treg</i> con     | nmand              |                                |                      |

#### Stata Workshop ver. 2.1

http://www.ticoneva.com/econ/stata-workshop/

| 12a. correction for fieteros | reuasticity                    |                           |
|------------------------------|--------------------------------|---------------------------|
| Description                  | Command                        | Example                   |
| Test if the homoscedasticity | estat hettest indep_variables  | hettest experience tenure |
| assumption holds             |                                |                           |
| (Run after regress)          |                                |                           |
| Robust Standard Errors       | regress <i>dep_variable</i>    | reg hourlywage experience |
| (Eicker-White Std. Err.)     | indep_variables, <b>robust</b> | tenure, robust            |
|                              | (Also works with xtreg)        |                           |
|                              |                                |                           |

## 12a. Correction for Heteroskedasticity

. reg hourlywage experience tenure, robust

| Linear regress                | ion                             |                                  |                       |                         | Number of obs<br>F( 2, 7)<br>Prob > F<br>R-squared<br>Root MSE | = 10<br>= 3.25<br>= 0.1002<br>= 0.5172<br>= 3.8081 |
|-------------------------------|---------------------------------|----------------------------------|-----------------------|-------------------------|----------------------------------------------------------------|----------------------------------------------------|
| hourlywage                    | Coef.                           | Robust<br>Std. Err.              | t                     | P>Itl                   | [95% Conf.                                                     | Interval]                                          |
| experience<br>tenure<br>_Cons | 2491599<br>.5712551<br>6.294649 | .1273134<br>.2351817<br>1.705796 | -1.96<br>2.43<br>3.69 | 0.091<br>0.045<br>0.008 | 5502081<br>.0151388<br>2.261082                                | .0518884<br>1.127371<br>10.32822                   |

An example of robust standard errors. Note the difference in standard errors compared to 10a.

## 12b. Correction for Error Correlation within Group and Over Time

| 12b. concettor for Error conclution within Group and over time |                                     |                          |
|----------------------------------------------------------------|-------------------------------------|--------------------------|
| Clustered Standard Errors                                      | regress dep_variable                | reg hourlywage tenure,   |
| Corrects within-group error                                    | indep_variables, vce(cluster        | vce(cluster workplace)   |
| correlation                                                    | clustervar)                         |                          |
|                                                                | (Also works with xtreg)             |                          |
| Newey-West Standard Errors                                     | newey dep_variable                  | newey hourlywage tenure, |
| Corrects for equi-correlated                                   | indep_variables, lag(periods)       | lag(2)                   |
| error over time. Error                                         |                                     |                          |
| beyond the number of                                           | Let Stata select optimal lag:       |                          |
| periods specified are                                          | <b>lvregress</b> gmm <i>dep_var</i> | ivregress gmm hourlywage |
| assumed to be uncorrelated                                     | <i>indep_vars,</i> wmatrix(hac nw   | tenure, wmat(hac nw opt) |
|                                                                | opt)                                |                          |

#### **13. Hypothesis Testing**

| Test linear hypothesis     | test varnames                               | test tenure experience       |
|----------------------------|---------------------------------------------|------------------------------|
|                            | test <i>exp1</i> [= <i>exp2</i> = ]         | test tenure – experience = 0 |
| Test non-linear hypothesis | <b>testnl</b> <i>exp2</i> [= <i>exp2</i> =] | testnl _b[tenure]^2 = 0      |

#### 14. Obtaining residuals and predicted values

| Obtain predicted values | <pre>predict new_var</pre>               | predict predicted_hourlywage |
|-------------------------|------------------------------------------|------------------------------|
| after regression        |                                          |                              |
| Obtain residuals        | predict <i>new_var,</i> <b>residuals</b> | predict estimated_u, r       |
|                         |                                          |                              |

## 15. Instrumental Variable Regression

| Description                                                                                                                                                                             | Command                                                                       | Example                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|
| When an independent<br>variable is correlated with the<br>error term, OLS is biased. IV<br>regression uses another<br>variable uncorrelated with the<br>error to predict the correlated | <pre>ivregress estimator dep_var exog_vars (endo_var = instrument_vars)</pre> | ivregress 2sls hourlywage<br>(education = free_edu) |
| one                                                                                                                                                                                     |                                                                               |                                                     |
| Test for endogeneity after IV regression                                                                                                                                                | estat endogenous                                                              | Estat endog                                         |

#### 16a. Discrete Choice Model

| Description                    | Command                                    | Example                    |
|--------------------------------|--------------------------------------------|----------------------------|
| Logit:                         | logit dep_var indep_vars                   | logit free_edu mothedu     |
| When the dependent variable    |                                            |                            |
| takes on binary values, we can |                                            |                            |
| use the logit model            |                                            |                            |
| However, the interpretation    | logit <i>dep_var indep_vars,</i> <b>or</b> | logit free_edu mothedu, or |
| of β Estimator is different    |                                            |                            |
| from the one we used for OLS.  |                                            |                            |
| So we need to use odd ratios   |                                            |                            |
|                                |                                            |                            |

## 16b. Additional Discrete Choice Models

| Description                 | Command                                | Example                    |
|-----------------------------|----------------------------------------|----------------------------|
| Multinomial Logit:          | <pre>mlogit dep_var indep_vars</pre>   | mlogit free_edu mothedu    |
| When the dependent variable |                                        |                            |
| takes on more than two      |                                        |                            |
| discrete values             |                                        |                            |
| Ordered Logit:              | <pre>ologit dep_var indep_vars</pre>   | ologit feedback budget, or |
| When the dependent variable |                                        |                            |
| represents ordinal ratings  |                                        |                            |
| (e.g. bad, good, best)      |                                        |                            |
| Rank-ordered Logit:         | <pre>rologit dep_var indep_vars,</pre> | rologit position training, |
| When the dependent variable | group(horse_id)                        | group(horse_id)            |
| represents successive draws |                                        |                            |
| without replacement (e.g.   |                                        |                            |
| places in a race)           |                                        |                            |

## **17. Obtaining Marginal Effects**

| Description                    | Command                           | Example                 |
|--------------------------------|-----------------------------------|-------------------------|
| The marginal effect of each    | <u>old syntax:</u> <b>mfx</b>     | mfx                     |
| independent variable on the    |                                   |                         |
| predicted value at the average | <u>new syntax:</u> margins,       | margins, dydx(motheduc) |
| value of the variable          | dydx( <i>indep_vars</i> ) atmeans | atmeans                 |